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Abstract The second order N -dimensional Schrödinger equation with Mie-type
potentials is reduced to a first order differential equation by using the Laplace trans-
formation. Exact bound state solutions are obtained using convolution theorem. The
Ladder operators are also constructed for the Mie-type potentials in N -dimensions.
Lie algebra associated with these operators are studied and it is found that they satisfy
the commutation relations for the SU(1,1) group.

Keywords Laplace transformation (LT) · Exact solution · Mie-type potentials ·
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1 Introduction

The exact bound state solutions of the non-relativistic Schrödinger equation with
spherically symmetric potentials play an important role in atomic and molecular spec-
troscopy. Over the decades, theoretical physicists have shown a great deal of interest
in solving multidimensional Schrödinger equation for various spherically symmetric
potentials [1–10]. These higher dimension studies provide a general treatment of the
problem in such a manner that one can obtain the required results in lower dimensions
just dialing appropriate N . Many analytical as well as numerical techniques have been
developed by researchers to investigate multidimensional Schrödinger equation for
physically significant potentials [11–13].

Mie-type potentials arise in the study of diatomic molecules. This type of potential
is exactly solvable and studied by many authors for lower dimensional as well as
higher dimensional Schrödinger equation [14–17]. The main goal of this paper is
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to use Laplace transform method and convolution theorem to solve the Mie-type
potentials in N -dimensional Schrödinger equation. The precious advantage of Laplace
transformation is that it can convert the second order differential equation into first
order one. After achieving the first order differential equation the solution becomes
very easy in transformed space. Finally we can reveal the actual solution in real space
by using the inverse Laplace transformation method. Here the inverse transformation
is done through the convolution theorem which is also a new aspect of this paper. More
recent works on LT can be found in the reference [18–25].

The contents of this paper is as follows. Section 2 gives the brief introduction of
the Laplace transform method, Sect. 3 gives the energy eigenvalues and the energy
eigenfunctions of the N -dimensional Schrödinger equation with Mie-type potentials.
In Sect. 4 Ladder operators for the considered potential as well as their Lie-algebra
with Casimir operator have been studied. Finally Sect. 5 serves the conclusion of the
present work.

2 Overview of Laplace transform method and convolution theorem

The Laplace transform φ(s) or L of a function f (t) is defined by [30,31]

φ(s) = L { f (t)} =
∫ ∞

0
e−st f (t)dt . (1)

If there is some constant σ ∈ � such that
∣∣e−σ t f (t)

∣∣ ≤ M for sufficiently large t , the
integral in Eq. (1) will exist for Re s > σ . The Laplace transform may fail to exist
because of a sufficiently strong singularity in the function f (t) as t → 0 . In particular

L
[

tα

�(α + 1)

]
= 1

sα+1 , α > −1 . (2)

The Laplace transform has the derivative properties

L
{

f (n)(t)
}

= snL { f (t)} −
n−1∑
k=0

sn−1−k f (k)(0) , (3)

L {
tn f (t)

} = (−1)nφ(n)(s) , (4)

where the superscript(n) denotes the n-th derivative with respect to t for f (n)(t), and
with respect to s for φ(n)(s).

The inverse transform is defined as L−1 {φ(s)} = f (t). One of the most important
properties of the Laplace transform is that given by the convolution theorem [30]. This
theorem is a powerful method to find the inverse Laplace transform. According to this
theorem if we have two transformed function g(s) = L {G(t)} and h(s) = L {H(t)},
then the product of these two is the Laplace transform of the convolution (G ∗ H)(t),
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where

(G ∗ H)(t) =
∫ t

0
G(t − τ)H(τ )dτ . (5)

So convolution theorem yields

L(G ∗ H)(t) = g(s)h(s) . (6)

Hence

L−1 {g(s)h(s)} =
∫ t

0
G(t − τ)H(τ )dτ . (7)

If we substitute w = t − τ , then we find the important consequence G ∗ H = H ∗ G.

3 Bound state spectrum

The Mie-type potentials [26] generally defined as

V (r) = D0

[
a0

b0 − a0

(r0

r

)b0 − b0

b0 − a0

(r0

r

)a0
]
, (8)

where D0 is the interaction energy between two atoms in a molecular system at equi-
librium distance r = r0. It is important to mention here that, when a0 and b0 are both
non integer (or one of them non integer) the potential class given by Eq. (8) has no
physical acceptance in literature at least it does not support the concern experimental
data.

Parameters a0 = 2, b0 = 1 give standard Morse or Kratzer-Fues potential of the
form [27]

V (r) = −D0

(
2r0

r
− r2

0

r2

)
. (9)

Moreover, the standard Kratzer potential is modified by adding a term to get the
modified Kratzer-type potential [27]

V (r) = −D0

(
r − r0

r

)2

. (10)

It is customary to take a general form of Mie-type potentials as

V (r) = A

r2 + B

r
+ C . (11)
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This form is more flexible because with A = −D0r2
0 , B = 2D0r0 and C = −D0, we

have the modified Kartzer potential and similarly for A = D0r2
0 , B = −2D0r0 and

C = 0 we have Kartzer-Fues potential.
The time independent Schrödinger equation for a particle of mass M in N -

dimensional space has the form [28]

− h̄2

2M
∇2

Nψ + Vψ = Eψ , (12)

where ∇2
N is the Laplacian operator in the polar coordinates (r, θ1, θ2, . . . , θN−2, ϕ)

of RN . Here r is the hyperradius and θ1, θ2, . . . , θN−2, ϕ are the hyperangles. The
form of ∇2

N is given by

∇2
N = r1−N ∂

∂r

(
r N−1 ∂

∂r

)
+ �2

N (�)

r2 , (13)

where �2
N (�) is the hyperangular momentum operator [28] given by

�2
N = −

N∑
i, j=1
i> j

�2
i j , �i j = xi

∂

∂x j
− x j

∂

∂xi
,

for all Cartesian components xi of the N -dimensional vector (x1, x2, . . . , xN ). Radial
part of Eq. (12) is extracted by using separation variable method. The separation con-
stant in this purpose is taken as β�N (N > 1) = �(� + N − 2) with � = 0, 1, 2, . . .,
[29]. In this way the N -dimensional hyperradial or in short the “radial” Schrödinger
equation becomes

[
d2

dr2 + N − 1

r

d

dr
− �(�+ N − 2)

r2 + 2M

h̄2 [E − V (r)]
]

R(r) = 0 , (14)

where E is the energy eigenvalue and � is the orbital angular momentum quantum
number.

Inserting the Mie-type potentials given by Eq. (11) into the Eq. (14) and taking the
following abbreviations

ν(ν + 1) = �(�+ N − 2)+ 2M A

h̄2 ; 2M

h̄2 (E − C) = −ε2 ; 2M B

h̄2 = −β (15)

with R
′′
(r) = d2 R

dr2 ; R
′
(r) = d R

dr we have

R
′′
(r)+ N − 1

r
R

′
(r)− ν(ν + 1)

r2 R(r)− ε2 R(r)+ β

r
R(r) = 0 . (16)
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Let us consider the bound state solution like R(r) = r−k f (r) with k > 0. Here the
term r−k ensures that for r → ∞, R(r) → 0 and f (r) is expected to behave like
f (r) → 0 as r → 0. Now inserting the above assumed solution in Eq. (16) it is easy
to achieve

r f
′′
(r)+ (N − 2k − 1) f

′
(r)

+
{

k(k + 1)− k(N − 1)− ν(ν + 1)

r
− ε2r + β

}
f (r) = 0 , (17)

were double prime over f (r) denotes the second order derivative of f (r)with respect
to r and similarly the single prime denotes the first order derivative. To get a Laplace
transform of the above equation we impose a parametric restriction

k(k + 1)− k(N − 1)− ν(ν + 1) = 0 , (18)

which has a solution k+ = k�N . So here we have

r f
′′
(r)+ (N − 2k�N − 1) f

′
(r)+

{
−ε2r + β

}
f (r) = 0 . (19)

Hence identifying t as r in Eq. (1) i.e φ(s) = L { f (r)} and using Eqs. (3, 4) in the
same manner, it is easy to get

(s2 − ε2)
dφ(s)

ds
+ {s(2k�N − N + 3)− β}φ(s) = 0 . (20)

It is worth to mention here that, parametric restriction given by Eq. (18) is not manda-
tory for applying the Laplace transform on Eq. (17). It only helps to get a first order
differential equation in transformed space. Now Eq. (20) is a linear first order homo-
geneous differential equation, which has a simple solution of the form

φ(s) = K (s + ε)−(2k�N −N+3)
(

1 − 2ε

s + ε

) β−(2k�N −N+3)ε
2ε

, (21)

were K is a constant. The expression
(

1 − 2ε
s+ε

) β−(2k�N −N+3)ε
2ε

is a multivalued function

when the power β−(2k�N −N+3)ε
2ε is a non integer [24]. The wave functions must be single

valued, so we must take

β − (2k�N − N + 3)ε

2ε
= n , n = 0, 1, 2, 3, . . . (22)

In this manner from Eq. (21),we have

φ(s) = K (s + ε)−a(s − ε)−b = K g(s)h(s) , (23)
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where a = 2k�N − N + 3 + n and b = −n. In order to find f (r) = L−1 {φ(s)}, we
find [31]

L−1 {
(s + ε)−a} = G(r) = ra−1e−εr

�(a)
,

L−1
{
(s − ε)−b

}
= H(r) = rb−1eεr

�(b)
. (24)

Now using Eq. (7), we have

f (r) = L−1 {φ(s)} = K (G ∗ H)(r) = K
∫ r

0
G(r − τ)H(τ )dτ

= K e−εr

�(a)�(b)

∫ r

0
(r − τ)a−1τ b−1e2ετdτ . (25)

The integration can be found in [32], which gives

∫ r

0
(r − τ)a−1τ b−1e2ετdτ = B(a, b)ra+b−1

1 F1(b, a + b, 2εr) , (26)

where 1 F1 is confluent hypergeometric functions [30]. Now using the Beta function
B(a, b) = �(a)�(b)

�(a+b) , the final form of f (r) can be written from Eq. (25)

f (r) = K

�(a + b)
e−εr ra+b−1

1 F1(b, a + b, 2εr) . (27)

So the radial wave function can be given as

Rn�N (r) = r−k�N f (r) = ζn�N r (k�N +2−N )e−εr
1 F1(−n, 2k�N + 3 − N , 2εr) , (28)

were ζn�N = K
�(a+b) is the normalization constant which can be evaluated from the

condition

∫ ∞

0
|Rn�N (r)|2r N−1dr = 1 . (29)

To evaluate the integration here we have some useful formulas [30]

1 F1(−q, α + 1, γ ) = q!α!
(q + α)! Lαq (γ ) ,

and

∫ ∞

0
xw+1e−x {

Lwh (x)
}2

dx = (w + h)!
h! (2h + w + 1) ,
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where Lαq (γ ) or [Lwh (x)] denotes the Laguerre polynomials. Hence the normalization
constant becomes

ζn�N = (2ε)k�N +2− N
2

1

(2k�N + 2 − N )!

√
(2k�N + 2 − N + n)!

n!(2k�N + 2n + 3 − N )! . (30)

Finally we write the energy eigenvalues from Eq. (22) and Eq. (15) as

En�N = C − M

2h̄2

(
B

n + k�N + 3−N
2

)2

, (31)

with the eigenfunctions

Rn�N (r) = (2ε)k�N +2− N
2

1

(2k�N + 2 − N )!

√
(2k�N + 2 − N + n)!

n!(2k�N + 2n + 3 − N )!
× r (k�N +2−N )e−εr

1 F1(−n, 2k�N + 3 − N , 2εr) . (32)

The complete orthonormalized energy eigenfunctions of the N -dimensional
Schrödinger equation with Mie-type potentials can be given by

ψ(r, θ1, θ2, . . . , θN−2, φ) =
∑

n,�,m

ζn�N Rn�N (r)Y
m
� (θ1, θ2, . . . , θN−2, φ) , (33)

where Y m
� (θ1, θ2, . . . , θN−2, φ) ≡ Y m

� (�) are the hyperspherical harmonics of degree
� on the SN−1 sphere. These harmonics are the roots of the equation

�2
N (�)Y

m
� (�)+ �(�+ N − 2)Y m

� (�) = 0 , (34)

which is the separated part of Eq. (12).

4 Construction of Ladder operators for Mie-type potentials in N-dimensions

In this part of the paper, Ladder operators for Mie-type potentials have been constructed
from the eigenfunctions that were obtained in Eq. (28).Using the formula given just
after Eq. (29), the Eq. (28) can be written as

Rn�N (y) = ηn�N yk�N +2−N e− y
2 L2k�N +2−N

n (y) , (35)

where ηn�N = ζn�N
( 1

2ε

)k�N +2−N n!(2k�N +2−N )!
(2k�N +n+2−N )! and y = 2εr . Our goal is to find the

differential Operators L̂± satisfying the property

L̂± Rn�N (y) = λ± Rn±1,�N (y) . (36)
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In other words, we wish to find the operators of the form

L̂± = f±(y)
d

dy
+ g±(y) . (37)

It is easy to achieve the following equation

y
d

dy
Rn�N = (k�N + 2 − N )Rn�N − y

2
Rn�N

+ ηn�N yk�N +2−N e− y
2 y

d

dy
L2k�N +2−N

n (y) . (38)

Applying the recurrence relation associated with Laguerre polynomials [30]

x
d

dx
Lαn (x) = nLαn (x)− (n + α)Lαn−1(x) , (39)

we obtain
(

−y
d

dy
+ k�N + n + 2 − N − y

2

)
Rn�N = ηn�N

ηn−1,�N
(n + k�N + 2 − N )Rn−1,�N .

(40)

So we have the annihilation operator

L̂− = −y
d

dy
− y

2
+ k�N + n + 2 − N , (41)

with eigenvalues

λ− =
√

n(n + 2k�N + 2 − N )(2n + 1 + 2k�N − N )

(2n + 2k�N + 3 − N )
. (42)

Similarly following the recurrence relation [30]

x
d

dx
Lαn (x) = (n + 1)Lαn+1(x)− (n + α + 1 − x)Lαn (x) , (43)

we have the creation operator

L̂+ = y
d

dy
− y

2
+ n + k�N + 1 , (44)

with eigenvalues

λ+ =
√
(n + 1)(n + 2k�N + 3 − N )(2n + 2k�N + 5 − N )

(2n + 2k�N + 3 − N )
. (45)
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Here it is interesting to study the Lie algebra associated with the operators L̂±. Using
the set of Eqs. (41, 42) and Eqs. (44, 45) we can compute commutator [L̂−, L̂+] as

[L̂−, L̂+]Rn�N (y) = λ0 Rn�N (y) , (46)

with the eigenvalues

λ0 = 2n + 2k�N − N + 3 . (47)

This makes possible to construct the operator

L̂0 = n̂ + k�N + 3 − N

2
. (48)

Now it is easy to compute the commutator relations among the three operators L̂± and
L̂0. They satisfy the following Lie algebra

[L̂−, L̂+] = 2L̂0 ; [L̂0, L̂+] = L̂+ ; [L̂−, L̂0] = L̂− , (49)

which corresponds to the commutator relations of the SU(1,1) algebra. We can generate
the following commutator brackets using the relations given in Eq. (49)

[L̂0, L̂a] = L̂s ; [L̂0, L̂s] = L̂a , (50)

where L̂a = L̂+ + L̂− and L̂s = L̂+ − L̂−.
Finally, the Casimir operator [33] of the group can also be expressed as

C̃ = L̂0(L̂0 − 1)− L̂+ L̂− = L̂0(L̂0 + 1)− L̂− L̂+ , (51)

with the eigenvalue equation

C̃ Rn�N = J (J − 1)Rn�N ; (52)

where J = k�N + 3−N
2 .

5 Conclusions

Some aspects of N - dimensional hyperradial Schrödinger equation for Mie-type poten-
tials have been investigated by Laplace transform approach. It is found that the energy
eigenfunctions and the energy eigenvalues depend on the dimensionality of the prob-
lem. This paper is flexible in the sense that we can obtain the results of some special
cases. Coulomb potential, with A = C = 0 and for arbitrary N , the results agree with
the reference [24]. We can reach all the results for Mie-type potentials, that obtained
in the work listed in reference [20] just finding k�3(> 0) from Eq. (18) in association
with Eq. (15) for the special case N = 3. The bound state spectrum of Kartzer-Fues
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potential can be achieved by setting C = 0 for ordinary three dimensional system as
well as for arbitrary dimensions. Moreover, using the recurrence relations associated
with the Laguerre polynomials, creation and annihilation operators have been con-
structed for the Mie-type potentials in N - dimensions and they are found to agree with
the Lie algebra of SU(1,1) group. Also Casimir operator of the group has been studied
at the end.

Laplace transform is a powerful, efficient and accurate alternative method of deriv-
ing energy eigenvalues and eigenfunctions of some spherically symmetric potentials
that are analytically solvable. In this paper it is clear that the method of solving N -
dimensional Schrödinger equation via Laplace transform is easier than the all previ-
ous known methods and may serve as a substitute for the factorization approach also
in lower dimensions. If there are analytically solvable potentials, Laplace transform
always provides the closed-forms for the energy eigenvalues as well as the correspond-
ing eigenfunctions. However for a given potential, if there is no such a solution, iterative
approach [34–36] provides a better way to overcome such situation. The results are
sufficiently accurate for such special potentials at least for practical purpose.
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